Variational Foundations of Online Backpropagation

نویسندگان

  • Salvatore Frandina
  • Marco Gori
  • Marco Lippi
  • Marco Maggini
  • Stefano Melacci
چکیده

On-line Backpropagation has become very popular and it has been the subject of in-depth theoretical analyses and massive experimentation. Yet, after almost three decades from its publication, it is still surprisingly the source of tough theoretical questions and of experimental results that are somewhat shrouded in mystery. Although seriously plagued by local minima, the batch-mode version of the algorithm is clearly posed as an optimization problem while, in spite of its effectiveness in many real-world problems, the on-line mode version has not been given a clean formulation, yet. Using variational arguments, in this paper, the on-line formulation is proposed as the minimization of a classic functional that is inspired by the principle of minimal action in analytic mechanics. The proposed approach clashes sharply with common interpretations of on-line learning as an approximation of batch-mode, and it suggests that processing data all at once might be just an artificial formulation of learning that is hopeless in difficult real-world problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast Second Order Stochastic Backpropagation for Variational Inference

We propose a second-order (Hessian or Hessian-free) based optimization method for variational inference inspired by Gaussian backpropagation, and argue that quasi-Newton optimization can be developed as well. This is accomplished by generalizing the gradient computation in stochastic backpropagation via a reparametrization trick with lower complexity. As an illustrative example, we apply this a...

متن کامل

Deep Variational Bayes Filters: Unsupervised Learning of State Space Models from Raw Data

We introduce Deep Variational Bayes Filters (DVBF), a new method for unsupervised learning and identification of latent Markovian state space models. Leveraging recent advances in Stochastic Gradient Variational Bayes, DVBF can overcome intractable inference distributions via variational inference. Thus, it can handle highly nonlinear input data with temporal and spatial dependencies such as im...

متن کامل

Expectation Backpropagation: Parameter-Free Training of Multilayer Neural Networks with Continuous or Discrete Weights

Multilayer Neural Networks (MNNs) are commonly trained using gradient descent-based methods, such as BackPropagation (BP). Inference in probabilistic graphical models is often done using variational Bayes methods, such as Expectation Propagation (EP). We show how an EP based approach can also be used to train deterministic MNNs. Specifically, we approximate the posterior of the weights given th...

متن کامل

Markov Chain Monte Carlo and Variational Inference: Bridging the Gap

Recent advances in stochastic gradient variational inference have made it possible to perform variational Bayesian inference with posterior approximations containing auxiliary random variables. This enables us to explore a new synthesis of variational inference and Monte Carlo methods where we incorporate one or more steps of MCMC into our variational approximation. We describe the theoretical ...

متن کامل

Stochastic Backpropagation and Approximate Inference in Deep Generative Models

We marry ideas from deep neural networks and approximate Bayesian inference to derive a generalised class of deep, directed generative models, endowed with a new algorithm for scalable inference and learning. Our algorithm introduces a recognition model to represent an approximate posterior distribution and uses this for optimisation of a variational lower bound. We develop stochastic backpropa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013